Rational, motivated students and suitable Units:

Detecting suspected contract cheating for unsupervised written assignments

Dr Joe Clare

Presentation at the WA Forum on Contract Cheating

Curtin University, WA

12 October, 2016
Estimating the size of the problem

• Because a third-party has produced an original piece of work, plagiarism detection software doesn’t work

• Some previous research has looked at how often the same users requested assistance from third-parties for computer code (Lancaster & Clarke, various)
 o Found repeat users
 o 2 month period, 54% of users made between 2 and 7 bid requests
 o 6 users made 51 or more bid requests

• Survey of students in Australia (Curtis & Vardanega, in press) found relatively steady prevalence rates for contract cheating
 o 3.1% at least once in 2004 compared to 2.8% in 2014
What is this talk about?

• Looking at the issue of contract cheating from an opportunity theory perspective
 o Can data identify students who use Computers to Help Evade Available Technology (aka C.H.E.A.T.)?

• An opportunistic analysis of some student data from Murdoch University

• Interesting patterns...

• If we buy the first part, what does this mean for the second part?
 o Targeted prevention at the student-, assessment item-, Unit-, and university-level
 o Next steps
Opportunity expects some people to C.H.E.A.T.?

- C.H.E.A.T.-ing: possible when three elements combine in time and space
 - A rational, motivated student
 - A suitable *unsupervised assessment item*
 - The absence of a capable guardianship
C.H.E.A.T.-ing: possible when three elements combine in time and space

- A rational, motivated student
- A suitable *unsupervised assessment item*
- The absence of a capable guardianship
How can we use data to examine this?

- Is there any proxy for C.H.E.A.T.-ing that could be used from available data?
 - E.g., parking in disabled bays has been used to identify chronic repeat offenders via *self-selection* (Pease and colleagues)

- What about differences in performance for the same student between supervised and unsupervised assessment items?
 - If people are submitting paid work from third-parties they should do better on unsupervised essays relative to supervised exams

- Based on other ‘problem’ patterns we’d expect to see
 - A general non-randomness of these patterns
 - Repeat targets/locations (some assignments are more suitable than others)
 - Repeat offenders (some students are more *motivated* to cheat that others)
Exploring this idea

• 2015 data for Units completed in the Law School at Murdoch
 o 3,798 results
 o 1,459 students
 o Average 2.6 units per student
 o Range from 1 unit to 9 units completed

• Units offered in a few major discipline areas
 o Criminology
 o Law
 o Legal studies
 o University breadth units

• Data on supervised and unsupervised assessment items
 o Converted to percentages
What would be weird?

- Used 4 different risk rules to find ‘unusual’ patterns between supervised and unsupervised assessment items

- Risk rule 1 4.6% incidence
 - Unsupervised ≥ 70% and Supervised ≤ 50%

- Risk rule 2 8.1% incidence
 - (Unsupervised − Supervised) ≥ 25 percentage points

- Risk rule 3 0.7% incidence
 - Unsupervised ≥ 80% and (Unsupervised − Supervised) ≥ 40 percentage points

- Risk rule 4 0.7% incidence
 - Unsupervised ≥ 60% and Supervised ≤ 30%
Clustering between disciplines: Rule 1 variation

Rule 1 violations by Academic Area

Risk rule 1
4.6% incidence
Unsupervised ≥ 70% and Supervised ≤ 50%
Clustering within discipline: unit-level Rule 1 variation

![Bar chart showing CRM Rule 1 violations - Percentage of Students in Unit.]

- Risk rule 1: 4.6% incidence
- Unsupervised ≥ 70% and Supervised ≤ 50%

High overall Discipline incidence, but still not all Units
Clustering within discipline: unit-level Rule 1 variation

Average overall incidence at discipline level – large variation across Units
Clustering within discipline: unit-level Rule 1 variation

Low overall incidence at discipline level – still some Units with unusual patterns
Combining rule variation at the unit-level

• Calculated the within-Unit incidence percentage as a ratio to the overall average rule violation for each rule
 o Counted if z-score > 1.64 relative to all other units

Frequency of $z > 1.64$
Combining rules at the unit-level

- Calculated the within-Unit incidence percentage as a ratio to the overall average rule violation for each rule
 - Counted if z-score > 1.64 relative to all other units
Within-student clustering across rules

Rule 1 - Unique Students

- None: 1,299 (89.0%)
- Once: 145 (9.9%)
- Twice: 14 (1.0%)
- Three times: 1 (0.1%)

Expected Count (λ) = 0.12

$P(\text{count} \geq 2) < .01$
Within-student clustering across rules

Rule 1 - Unique Students
- Expected Count (λ) = 0.12
- $P(\text{count} \geq 2) < .01$

Rule 2 - Unique Students
- Expected Count (λ) = 0.21
- $P(\text{count} \geq 2) < .02$

Rule 3 - Unique Students
- Expected Count (λ) = 0.02
- $P(\text{count} \geq 1) < .02$

Rule 4 - Unique Students
- Expected Count (λ) = 0.02
- $P(\text{count} \geq 1) < .02$
31 students with multiple violations: 2.1% of population...

- Prevalence study estimated 2.8% in 2014
- Repeats common within this sample across rule types
- As a proportion of units in the sample:
 - Students 3, 8, 9, 14, 16, 22, 25, & 31 had weird patterns for 100% of units
 - Students 2, 17, 23 and 27 had weird patterns for 3 out of 4 units
31 students with multiple violations: 2.1% of population...

- Prevalence study estimated 2.8% in 2014
- Repeats common within this sample across rule types
- As a proportion of units in the sample:
 - Students 3, 8, 9, 14, 16, 22, 26, & 32 had weird patterns for 100% of units
 - Students 2, 17, 23 and 26 had weird patterns for 3 out of 4 units

<table>
<thead>
<tr>
<th>Student #</th>
<th>Rule 1</th>
<th>Rule 2</th>
<th>Rule 3</th>
<th>Rule 4</th>
<th># Units in sample</th>
<th>% unusual units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
What does all of this mean?

• Just because the patterns are weird, doesn’t mean the students are C.H.E.A.T.-ing

• Type 1 errors – false positives
 o Terrible at exams?
 o Potentially identified for educational support

• Type 2 errors – missing those who do just-enough on exams
 o Students can’t control either mark – they can only control effort
 o Looking across Units prevents one-offs

• Can we use these types of patterns as a proxy for contract cheating?
 o Definitely a proxy for a ‘problem’
 o How could we address the ‘problem’?
Opportunity as a platform for targeted problem prevention

How can we manipulate the risk, reward, effort, excuses, and provocations for this activity?
Manipulating the sides and levels of the problem triangle

- Building on *what works* for crime prevention, we can do things to alter the *risk, reward, and effort* of the problem context at the
 - Student-level (motivated offender)
 - Unsupervised assessment item-level (target)
 - Unit-level (management & guardianship)
 - University-level (super controllers)

- The key to successful, sustainable responses
 - Prevention strategies that are logistically feasible (time and cost)
 - Compatible with other university policy on misconduct and assessment

- Commitment to opportunity reduction as a strategy is key
 - How this can be achieved needs to be tailored to each specific situation
Next steps

- More data

- Analysis of
 - Individual student characteristics
 - Unsupervised assessment items (in high- and low-prevalence Units)

- Trial targeted interventions in high-prevalence units

- Not dependent on apprehension

- On-going evaluation is crucial
Questions...

Dr Joe Clare

Murdoch University, Western Australia

j.clare@murdoch.edu.au

+61 8 9360 2319